Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous , primarily methane (95%), small amounts of higher , and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium. Methane is a colorless and odorless gas, and, after carbon dioxide, is the second-greatest greenhouse gas that contributes to global climate change.
Natural gas is a fossil fuel that is formed when layers of organic matter (primarily marine microorganisms) are thermally decomposed under oxygen-free conditions, subjected to intense heat and pressure underground over millions of years. The energy that the decayed organisms originally obtained from the sun via photosynthesis is stored as chemical energy within the molecules of methane and other hydrocarbons.
Natural gas can be burned for heating, cooking, and electricity generation. Consisting mainly of methane, natural gas is rarely used as a chemical Raw material.
The extraction and consumption of natural gas is a major industry. When burned for heat or electricity, natural gas emits fewer toxic air pollutants, less carbon dioxide, and almost no particulate matter compared to other fossil fuels. However, gas venting and unintended fugitive emissions throughout the supply chain can result in natural gas having a similar carbon footprint to other fossil fuels overall.
Natural gas can be found in underground geological formations, often alongside other fossil fuels like coal and Petroleum (petroleum). Most natural gas has been created through either biogenic or thermogenic processes. Thermogenic gas takes a much longer period of time to form and is created when organic matter is heated and compressed deep underground. Methanogenic organisms produce methane from a variety of sources, principally carbon dioxide.
During petroleum production, natural gas is sometimes Gas flare rather than being collected and used. Before natural gas can be burned as a fuel or used in manufacturing processes, it almost always has to be processed to remove impurities such as water. The byproducts of this processing include ethane, propane, , , and higher molecular weight hydrocarbons. Hydrogen sulfide (which may be converted into pure sulfur), carbon dioxide, water vapor, and sometimes helium and nitrogen must also be removed.
Natural gas is sometimes informally referred to simply as "gas", especially when it is being compared to other energy sources, such as oil, coal or renewables. However, it is not to be confused with gasoline, which is also shortened in colloquial usage to "gas", especially in North America.
Natural gas is measured in standard cubic meters or standard cubic feet. The density compared to air ranges from 0.58 (16.8 g/mole, 0.71 kg per standard cubic meter) to as high as 0.79 (22.9 g/mole, 0.97 kg per scm), but generally less than 0.64 (18.5 g/mole, 0.78 kg per scm). For comparison, pure methane (16.0425 g/mole) has a density 0.5539 times that of air (0.678 kg per standard cubic meter).
Natural gas was not widely used before the development of long distance pipelines in the early 20th century. Before that, most use was near to the source of the well, and the predominant gas for fuel and lighting during the industrial revolution was manufactured coal gas.
The history of natural gas in the United States begins with localized use. In the seventeenth century, French missionaries witnessed the American Indians setting fire to natural gas seeps around Lake Erie, and scattered observations of these seeps were made by European-descended settlers throughout the eastern seaboard through the 1700s. In 1821, William Hart dug the first commercial natural gas well in the United States at Fredonia, New York, United States, which led in 1858 to the formation of the Fredonia Gas Light Company. Further such ventures followed near wells in other states, until technological innovations allowed the growth of major long distance pipelines from the 1920s onwards.
By 2009, (or 8%) had been used out of the total of estimated remaining recoverable reserves of natural gas.
Until the early part of the 20th century, most natural gas associated with oil was either simply released or Gas flare at oil fields. Gas venting and production flaring are still practised in modern times, but efforts are ongoing around the world to retire them, and to replace them with other commercially viable and useful alternatives.
In addition to transporting gas via pipelines for use in power generation, other end uses for natural gas include export as LNG (LNG) or conversion of natural gas into other liquid products via gas to liquids (GTL) technologies. GTL technologies can convert natural gas into liquids products such as gasoline, diesel or jet fuel. A variety of GTL technologies have been developed, including Fischer–Tropsch (F–T), methanol to gasoline (MTG) and syngas to gasoline plus (STG+). F–T produces a synthetic crude that can be further refined into finished products, while MTG can produce synthetic gasoline from natural gas. STG+ can produce drop-in gasoline, diesel, jet fuel and aromatic chemicals directly from natural gas via a single-loop process. In 2011, Royal Dutch Shell's per day F–T plant went into operation in Qatar.
Natural gas can be "associated" (found in ), or "non-associated" (isolated in natural gas fields), and is also found in (as coalbed methane). It sometimes contains a significant amount of ethane, propane, butane, and pentane—heavier hydrocarbons removed for commercial use prior to the methane being sold as a consumer fuel or chemical plant feedstock. Non-hydrocarbons such as carbon dioxide, nitrogen, helium (rarely), and hydrogen sulfide must also be removed before the natural gas can be transported.
Natural gas extracted from oil wells is called casinghead gas (whether or not truly produced up the annulus and through a casinghead outlet) or associated gas. The natural gas industry is extracting an increasing quantity of gas from challenging, unconventional resource types: sour gas, tight gas, shale gas, and coalbed methane.
There is some disagreement on which country has the largest proven gas reserves. Sources that consider that Russia has by far the largest proven reserves include the US Central Intelligence Agency (47,600 km3) and Energy Information Administration (47,800 km3),US Energy Information Administration, International statistics, accessed 1 December 2013. as well as the Organization of Petroleum Exporting Countries (48,700 km3). Contrarily, BP credits Russia with only 32,900 km3, which would place it in second, slightly behind Iran (33,100 to 33,800 km3, depending on the source).
It is estimated that there are about 900,000 km3 of "unconventional" gas such as shale gas, of which 180,000 km3 may be recoverable. In turn, many studies from MIT, Black & Veatch and the US Department of Energy predict that natural gas will account for a larger portion of electricity generation and heat in the future.
The world's largest gas field is the offshore South Pars/North Dome Gas-Condensate field, shared between Iran and Qatar. It is estimated to have of natural gas and of natural gas condensates.
Because natural gas is not a pure product, as the reservoir pressure drops when non-associated gas is extracted from a field under supercritical (pressure/temperature) conditions, the higher molecular weight components may partially condense upon isothermic depressurizing—an effect called retrograde condensation. The liquid thus formed may get trapped as the pores of the gas reservoir get depleted. One method to deal with this problem is to re-inject dried gas free of condensate to maintain the underground pressure and to allow re-evaporation and extraction of condensates. More frequently, the liquid condenses at the surface, and one of the tasks of the gas plant is to collect this condensate. The resulting liquid is called natural gas liquid (NGL) and has commercial value.
Following the increased production in the United States, shale gas exploration is beginning in countries such as Poland, China, and South Africa. Chinese geologists have identified the Sichuan Basin as a promising target for shale gas drilling, because of the similarity of shales to those that have proven productive in the United States. Production from the Wei-201 well is between 10,000 and 20,000 m3 per day. In late 2020, China National Petroleum Corporation claimed daily production of 20 million cubic meters of gas from its Changning-Weiyuan demonstration zone.
Most town "gashouses" located in the eastern US in the late 19th and early 20th centuries were simple by-product coke ovens that heated bituminous coal in air-tight chambers. The gas driven off from the coal was collected and distributed through networks of pipes to residences and other buildings where it was used for cooking and lighting. (Gas heating did not come into widespread use until the last half of the 20th century.) The coal tar (or Bitumen) that collected in the bottoms of the gashouse ovens was often used for roofing and other waterproofing purposes, and when mixed with sand and gravel was used for paving streets.
In 2013, Japan Oil, Gas and Metals National Corporation (JOGMEC) announced that they had recovered commercially relevant quantities of natural gas from methane hydrate.
The block flow diagram also shows how processing of the raw natural gas yields byproduct sulfur, byproduct ethane, and natural gas liquids (NGL) propane, butanes and natural gasoline (denoted as pentanes +).
The 2021 global energy crisis was driven by a global surge in demand as the world quit the economic recession caused by COVID-19, particularly due to strong energy demand in Asia.
Whenever gas is bought or sold at custody transfer points, rules and agreements are made regarding the gas quality. These may include the maximum allowable concentration of Carbon dioxide, Hydrogen sulfide and Water vapor. Usually sales quality gas that has been treated to remove contamination is traded on a "dry gas" basis and is required to be commercially free from objectionable odours, materials, and dust or other solid or liquid matter, waxes, gums and gum forming constituents, which might damage or adversely affect operation of equipment downstream of the custody transfer point.
Based on their geographic origin, H-gas (high-calorific gas) and L-gas (low-calorific gas) are to be distinguished. Both types require separate transport, leading to two separate pipeline networks, e.g. in parts of Germany (with a strengthened focus and transition towards H-gas, as the L-gas reservoirs in Germany and the Netherlands are declining).
LNG carrier ships transport liquefied natural gas (LNG) across oceans, while can carry LNG or compressed natural gas (CNG) over shorter distances. Sea transport using CNG carrier ships that are now under development may be competitive with LNG transport in specific conditions.
Gas is turned into liquid at a liquefaction plant, and is returned to gas form at gasification plant at the terminal. Shipborne regasification equipment is also used. LNG is the preferred form for long distance, high volume transportation of natural gas, whereas pipeline is preferred for transport for distances up to over land and approximately half that distance offshore.
CNG is transported at high pressure, typically above . Compressors and decompression equipment are less capital intensive and may be economical in smaller unit sizes than liquefaction/regasification plants. Natural gas trucks and carriers may transport natural gas directly to end-users, or to distribution points such as pipelines.
In the past, the natural gas which was recovered in the course of recovering petroleum could not be profitably sold, and was simply burned at the oil field in a process known as gas flare. Flaring is now illegal in many countries. Additionally, higher demand in the last 20–30 years has made production of gas associated with oil economically viable. As a further option, the gas is now sometimes re- into the formation for enhanced oil recovery by pressure maintenance as well as miscible or immiscible flooding. Conservation, re-injection, or flaring of natural gas associated with oil is primarily dependent on proximity to markets (pipelines), and regulatory restrictions.
Natural gas can be indirectly exported through the absorption in other physical output. The expansion of shale gas production in the US has caused prices to drop relative to other countries. This has caused a boom in energy intensive manufacturing sector exports, whereby the average dollar unit of US manufacturing exports has almost tripled its energy content between 1996 and 2012.
A "master gas system" was invented in Saudi Arabia in the late 1970s, ending any necessity for flaring. Satellite and nearby infra-red camera observations, however, shows that flaring National Geophysical Data Center (NGDC) and venting are still happening in some countries.
Natural gas is used to generate electricity and heat for desalination. Similarly, some landfills that also discharge methane gases have been set up to capture the methane and generate electricity.
Natural gas is often stored underground referencesinside depleted gas reservoirs from previous gas wells, salt domes, or in tanks as liquefied natural gas. The gas is injected in a time of low demand and extracted when demand picks up. Storage nearby end users helps to meet volatile demands, but such storage may not always be practicable.
With 15 countries accounting for 84% of the worldwide extraction, access to natural gas has become an important issue in international politics, and countries vie for control of pipelines. In the first decade of the 21st century, Gazprom, the state-owned energy company in Russia, engaged in disputes with Ukraine and Belarus over the price of natural gas, which have created concerns that gas deliveries to parts of Europe could be cut off for political reasons. The United States is preparing to export natural gas.
Many gas and oil companies are considering the economic and environmental benefits of floating liquefied natural gas (FLNG). There are currently projects underway to construct five FLNG facilities. Petronas is close to completion on their FLNG-1 at Daewoo Shipbuilding and Marine Engineering and are underway on their FLNG-2 project at Samsung Heavy Industries. Shell Prelude is due to start production 2017. The Browse LNG project will commence FEED in 2019.
Often well head gases require removal of various hydrocarbon molecules contained within the gas. Some of these gases include heptane, pentane, propane and other hydrocarbons with molecular weights above methane (). The natural gas transmission lines extend to the natural gas processing plant or unit which removes the higher-molecular weight hydrocarbons to produce natural gas with energy content between . The processed natural gas may then be used for residential, commercial and industrial uses.
Domestic appliances, furnaces, and boilers use low pressure, usually with a standard pressure around over atmospheric pressure. The pressures in the supply lines vary, either the standard utilization pressure (UP) mentioned above or elevated pressure (EP), which may be anywhere from over atmospheric pressure. Systems using EP have a regulator at the service entrance to step down to UP.
Natural gas piping systems inside buildings are often designed with pressures of , and have downstream pressure regulators to reduce pressure as needed. In the United States the maximum allowable operating pressure for natural gas piping systems within a building is based on NFPA 54: National Fuel Gas Code, except when approved by the Public Safety Authority or when insurance companies have more stringent requirements.
Generally, natural gas system pressures are not allowed to exceed unless all of the following conditions are met:
Generally, a maximum liquefied petroleum gas pressure of is allowed, provided the building is constructed in accordance with NFPA 58: Liquefied Petroleum Gas Code, Chapter 7.[2] Plumbing Engineering Design Handbook | A Plumbing Engineer's Guide to System Design and Specifications | American Society of Plumbing Engineers | Plumbing Systems | Volume 2 Chapter 7 — Fuel Gas Piping Systems Page 115
A seismic earthquake valve operating at a pressure of 55 psig (3.7 bar) can stop the flow of natural gas into the site wide natural gas distribution piping network (that runs (outdoors underground, above building roofs, and or within the upper supports of a canopy roof). Seismic earthquake valves are designed for use at a maximum of 60 psig.[3] Risk-based maintenance: an holistic application to the gas distribution industry | Xavier António Reis Andrade | 2016 | Page 15 | Figure 3.2: Technical drawing of the pressure regulator and measurement station.[4] State of California | Apply for Gas Shutoff Valve Certification for Residential Structures | The Division of the State Architect (DSA) oversees the certification of two types of gas shutoff valves as required by the Health and Safety Code.
In Australia, natural gas is transported from gas processing facilities to regulator stations via transmission pipelines. Gas is then regulated down to distributed pressures and the gas is distributed around a gas network via gas mains. Small branches from the network, called services, connect individual domestic dwellings, or multi-dwelling buildings to the network. The networks typically range in pressures from 7 kPa (low pressure) to 515 kPa (high pressure). Gas is then regulated down to 1.1 kPa or 2.75 kPa, before being metered and passed to the consumer for domestic use. Natural gas mains are made from a variety of materials: historically cast iron, though more modern mains are made from steel or polyethylene.
In some states in the USA, natural gas can be supplied by independent natural gas wholesalers/suppliers using existing pipeline owners' infrastructure through Natural Gas Choice programs.
LPG (liquefied petroleum gas) typically fuels outdoor and portable grills. Although, compressed natural gas (CNG) is sparsely available for similar applications in the US in rural areas underserved by the existing pipeline system and distribution network of the less expensive and more abundant LPG (liquefied petroleum gas).
Besides use in road vehicles, CNG can also be used in aircraft. Compressed natural gas has been used in some aircraft like the Aviat Aircraft Husky 200 CNG and the Chromarat VX-1 KittyHawk
LNG is also being used in aircraft. aircraft manufacturer Tupolev for instance is running a development program to produce LNG- and hydrogen-powered aircraft. The program has been running since the mid-1970s, and seeks to develop LNG and hydrogen variants of the Tu-204 and Tu-334 passenger aircraft, and also the Tu-330 cargo aircraft. Depending on the current market price for jet fuel and LNG, the consumption cost advantage for LNG-powered aircraft is approximately 18.96%, along with a 53.72% reduction to carbon monoxide, hydrocarbon and
/ref>
The advantages of liquid methane as a jet engine fuel are that it has more specific energy than the standard kerosene mixes do and that its low temperature can help cool the air which the engine compresses for greater volumetric efficiency, in effect replacing an intercooler. Alternatively, it can be used to lower the temperature of the exhaust.
Fuel for industrial heating and desiccation processes.
Raw material for large-scale fuel production using gas-to-liquid (GTL) process (e.g. to produce sulphur-and aromatic-free diesel with low-emission combustion).
After release to the atmosphere, methane is removed by gradual oxidation to carbon dioxide and water by hydroxyl radicals () formed in the troposphere or stratosphere, giving the overall chemical reaction + 2 → + 2. While the lifetime of atmospheric methane is relatively short when compared to carbon dioxide, with a half-life of about 7 years, it is more efficient at trapping heat in the atmosphere, so that a given quantity of methane has 84 times the global-warming potential of carbon dioxide over a 20-year period and 28 times over a 100-year period. Natural gas is thus a potent greenhouse gas due to the strong radiative forcing of methane in the short term, and the continuing effects of carbon dioxide in the longer term.
Targeted efforts to reduce warming quickly by reducing anthropogenic methane emissions is a climate change mitigation strategy supported by the Global Methane Initiative.
In terms of the warming effect over 100 years, natural gas production and use comprises about one fifth of human greenhouse gas emissions, and this contribution is growing rapidly. Globally, natural gas use emitted about 7.8 billion tons of in 2020 (including flaring), while coal and oil use emitted 14.4 and 12 billion tons, respectively. The IEA estimates the energy sector (oil, natural gas, coal and bioenergy) to be responsible for about 40% of human methane emissions. According to the IPCC Sixth Assessment Report, natural gas consumption grew by 15% between 2015 and 2019, compared to a 5% increase in oil and oil product consumption.
The continued financing and construction of new gas pipelines indicates that huge emissions of fossil greenhouse gases could be locked-in for 40 to 50 years into the future. In the U.S. state of Texas alone, five new long-distance gas pipelines have been under construction, with the first entering service in 2019, and the others scheduled to come online during 2020–2022.
The UK government is also experimenting with alternative home heating technologies to meet its climate goals. To preserve their businesses, natural gas utilities in the United States have been lobbying for laws preventing local electrification ordinances, and are promoting renewable natural gas and hydrogen fuel.
Extraction of natural gas (or oil) leads to decrease in pressure in the oil reservoir. Such decrease in pressure in turn may result in subsidence — sinking of the ground above. Subsidence may affect ecosystems, waterways, sewer and water supply systems, foundations, and so on.
In hydraulic fracturing, well operators force water mixed with a variety of chemicals through the wellbore casing into the rock. The high pressure water breaks up or "fracks" the rock, which releases gas from the rock formation. Sand and other particles are added to the water as a proppant to keep the fractures in the rock open, thus enabling the gas to flow into the casing and then to the surface. Chemicals are added to the fluid to perform such functions as reducing friction and inhibiting corrosion. After the "frack", oil or gas is extracted and 30–70% of the frack fluid, i.e. the mixture of water, chemicals, sand, etc., flows back to the surface. Many gas-bearing formations also contain water, which will flow up the wellbore to the surface along with the gas, in both hydraulically fractured and non-hydraulically fractured wells. This produced water often has a high content of salt and other dissolved minerals that occur in the formation.
The volume of water used to hydraulically fracture wells varies according to the hydraulic fracturing technique. In the United States, the average volume of water used per hydraulic fracture has been reported as nearly 7,375 gallons for vertical oil and gas wells prior to 1953, nearly 197,000 gallons for vertical oil and gas wells between 2000 and 2010, and nearly 3 million gallons for horizontal gas wells between 2000 and 2010.
Determining which fracking technique is appropriate for well productivity depends largely on the properties of the reservoir rock from which to extract oil or gas. If the rock is characterized by low-permeability – which refers to its ability to let substances, i.e. gas, pass through it, then the rock may be considered a source of tight gas. Fracking for shale gas, which is currently also known as a source of unconventional gas, involves drilling a borehole vertically until it reaches a lateral shale rock formation, at which point the drill turns to follow the rock for hundreds or thousands of feet horizontally. In contrast, conventional oil and gas sources are characterized by higher rock permeability, which naturally enables the flow of oil or gas into the wellbore with less intensive hydraulic fracturing techniques than the production of tight gas has required. The decades in development of drilling technology for conventional and unconventional oil and gas production have not only improved access to natural gas in low-permeability reservoir rocks, but also posed significant adverse impacts on environmental and public health.
The US EPA has acknowledged that toxic, carcinogenic chemicals, i.e. benzene and ethylbenzene, have been used as gelling agents in water and chemical mixtures for high volume horizontal fracturing (HVHF). Following the hydraulic fracture in HVHF, the water, chemicals, and frack fluid that return to the well's surface, called flowback or produced water, may contain radioactive materials, heavy metals, natural salts, and hydrocarbons which exist naturally in shale rock formations. Fracking chemicals, radioactive materials, heavy metals, and salts that are removed from the HVHF well by well operators are so difficult to remove from the water they are mixed with, and would so heavily water pollution the water cycle, that most of the flowback is either recycled into other fracking operations or injected into deep underground wells, eliminating the water that HVHF required from the hydrologic cycle.
Historically low gas prices have delayed the nuclear renaissance, as well as the development of solar thermal energy.
Except in the European Union, the U.S., and Canada, natural gas is sold in gigajoule retail units. LNG (liquefied natural gas) and LPG (liquefied petroleum gas) are traded in metric tonnes (1,000 kg) or million BTU as spot deliveries. Long term natural gas distribution contracts are signed in cubic meters, and LNG contracts are in metric tonnes. The LNG and LPG is transported by specialized LNG carrier, as the gas is liquified at cryogenic temperatures. The specification of each LNG/LPG cargo will usually contain the energy content, but this information is in general not available to the public. The European Union aimed to cut its gas dependency on Russia by two-thirds in 2022.
In August 2015, possibly the largest natural gas discovery in history was made and notified by an Italian gas company ENI. The energy company indicated that it has unearthed a "supergiant" gas field in the Mediterranean Sea covering about . This was named the Zohr Field gas field and could hold a potential of natural gas. ENI said that the energy is about . The Zohr Field field was found in the deep waters off the northern coast of Egypt and ENI claims that it will be the largest ever in the Mediterranean and even the world.
In the United States, retail sales are often in units of (th); 1 therm = 100,000 BTU. Gas sales to domestic consumers are often in units of 100 standard cubic feet (scf). measure the volume of gas used, and this is converted to therms by multiplying the volume by the energy content of the gas used during that period, which varies slightly over time. The typical annual consumption of a single family residence is 1,000 therms or one Residential Customer Equivalent (RCE). Wholesale transactions are generally done in (Dth), thousand decatherms (MDth), or million decatherms (MMDth). A million decatherms is a trillion BTU, roughly a billion cubic feet of natural gas.
The price of natural gas varies greatly depending on location and type of consumer. The typical caloric value of natural gas is roughly 1,000 BTU per cubic foot, depending on gas composition. Natural gas in the United States is traded as a futures contract on the New York Mercantile Exchange. Each contract is for 10,000 million BTU or . Thus, if the price of gas is $10/million BTU on the NYMEX, the contract is worth $100,000.
A gigajoule (GJ) is a measure approximately equal to of oil, or or 1 million BTUs of gas. The energy content of gas supply in Canada can vary from depending on gas supply and processing between the wellhead and the customer.
|
|